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Abstract. Dynamical processes taking place on real networks define on them evolving subnetworks whose
topology is not necessarily the same of the underlying one. We investigate the problem of determining the
emerging degree distribution, focusing on a class of tree-like processes, such as those used to explore the
Internet’s topology. A general theory based on mean-field arguments is proposed, both for single-source
and multiple-source cases, and applied to the specific example of the traceroute exploration of networks.
Our results provide a qualitative improvement in the understanding of dynamical sampling and of the
interplay between dynamics and topology in large networks like the Internet.

PACS. 89.75.-k Complex systems – 89.20.Hh World Wide Web, Internet – 89.75.Fb Structures
and organization in complex systems

1 Introduction

The theory of complex networks is a primary tool in the
interdisciplinary research in complex systems. It provides
a simple (coarse-grained) description of natural as well
as social and technological complex systems, by means of
mapping their elements, and the interactions among them,
on the vertices and the edges of a graph [1]. Different sys-
tems correspond to microscopically different networks, but
their general statistical properties may display similarities.
Using the tools of statistical physics in analyzing experi-
mental data, researchers have obtained important insights
on the structure of these complex networks, discovering
universal properties that are common to very different
systems. In particular, most of real networks seem to be
sparse, with a very small diameter (small-world property),
and to present large fluctuations in the connectivity (de-
gree) of the nodes.

The theoretical models claiming to explain the origins
of these universal properties can be roughly divided in two
classes: static models, in which the whole network struc-
ture is assigned a priori, and growing models, in which
new nodes attach to a pre-existing network by means of
a given number of links [2–5]. Much less attention was in-
stead devoted to the other very important issue concerning
the relation between networks structure and the processes
used to collect the experimental data. Some questions arise
naturally: are the experimental data really reliable? can
the ubiquity of some properties be the result of systematic
biases introduced by the sampling process itself?
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These questions have been recently addressed in a se-
ries of works [6–10] that study the sampling of networks
from both static and dynamic points of view. Among
them, the work by Petermann and De Los Rios [6] is the
first in which the idea that different generation algorithms
may lead to different topological properties is exploited to
show analytically that the observed power-law degree dis-
tributions can be an artifact of biases affecting the sam-
pling techniques.

This issue is particularly relevant for the physical In-
ternet, that is the prototype of a complex network: a huge
number of computers are connected together to form a
continuously evolving, self-organizing network, on which a
large variety of dynamical processes take place [11]. As the
robustness and performances of large technological net-
works strongly depend on their topology, an accurate, un-
biased knowledge of the Internet is necessary to support
the work of practitioners in improving its structure and
functioning.

Motivated by the importance of correctly knowing net-
work’s topology, the present work is devoted to clarify the
mechanisms governing the main techniques used in the
dynamical sampling of complex networks. In order to ac-
complish this task, we first present the general framework
that applies to a large class of tree-like dynamical pro-
cesses, then we focus on the traceroute sampling of net-
works with homogeneous and heterogeneous degree pro-
files. We show that the role played by the dynamics is very
different in homogeneous and heterogeneous networks. In
the latter case, that should correspond to the case of the
Internet, the sampling process introduces some level of
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inhomogeneity that paradoxically increases the sampling
accuracy of the tail of the degree distribution.

Our results are in agreement with previous analyti-
cal and numerical achievements, but allow a more unitary
view of the problem. Dynamical sampling techniques are
examples of the interplay between networks topology and
the dynamics occurring on it. Therefore the dynamical ap-
proach presented in this paper could be considered as a
theoretical improvement with respect to previous analyti-
cal studies based on nodes exposure methods [12,13], that
are essentially static algorithms.

Moreover, our method can be easily adapted to study
other sampling algorithms expressly designed to acquire
ego-centric views of a network, such as network’s tomog-
raphy [14,15] and crawling algorithms in community net-
works (the WWW, P2P networks, etc.) [16]. Similar dy-
namical patterns are observed also in network processes
that are not directly related to sampling, such as epi-
demics [17], rumors spreading [18], diffusion of innova-
tions [19] and threshold models [20].

In summary, we provide a unified description of a class
of dynamical phenomena in terms of tree-like evolving
structures on networks, and explain how the dynamical
rules influence the emerging topological properties, by fo-
cusing on the degree distribution.

The paper is organized as follows. In Section 2, we
present the general theoretical formalism that can be used
to study the degree distribution generated by tree-like
processes on networks. The important application to the
traceroute problem is discussed in Section 3. Some conclu-
sions are presented in Section 4 together with examples of
other possible applications.

2 General formalism for tree-like processes

Among the various types of algorithms and dynamical
models evolving on networks, we take into account those
corresponding to the following general dynamical picture,
that is also valid for the special case of traceroute-like
explorations. Let us assume the process starts from a sin-
gle node and propagates iteratively throughout the net-
work. At each temporal step, some nodes at the interface
of the growing cluster are selected and some of their still
unreached neighbors are visited. The latter ones become
part of the interface, while the former interfacial nodes
are moved to the bulk of the cluster (a sketch of the dy-
namics is reported in Fig. 1). During the dynamics we can
always identify three distinct classes of nodes: bulk, in-
terfacial, and unreached nodes. When the above process
takes place on a random network, in the limit of large net-
work’s size N , the overall dynamics is well represented by
the temporal evolution of some mean-field quantities, the
densities of bulk nodes b(t), interfacial nodes i(t), and un-
reached nodes u(t). Obviously, u(t)+i(t)+b(t) = 1 always
during the dynamics.

On a generic random network, however, the degree
is not fixed, the nodes being divided in degree classes.
The global densities are replaced by degree-dependent

Fig. 1. Sketch representing the evolution of the considered
class of dynamical processes. Starting from a single source, the
nodes of the network are progressively visited. Once the nodes
at the interface (grey nodes) have spread the process towards
their still unknown neighbors (white nodes), they are moved
to the bulk (black nodes).

partial densities bk(t), ik(t), and uk(t). The partial den-
sity for unreached nodes of degree k is defined as the
fraction of nodes of degree k that are still unreached at
time t. The normalization relation is

∑
k P (k)uk(t) = u(t),

where P (k) is the degree distribution of the underlying
network. The other quantities are defined similarly.

More in general, one may be interested in situations
in which the network is still maximally random (with de-
gree distribution P (k)) but with some degree correlations,
expressed by the conditional probability P (k|h) that a
node of degree k is linked to a node of degree h. One
can also consider the nodes divided in types α, i.e. dis-
crete or continuous states defined on the nodes. Types are
used to create multi-partite networks and to encode some
non-topological feature. Another way to account for non-
topological properties is that of putting weights on the
links, that depend only on the degrees and the types of
the extremities. Link weights may account for dynamical
properties of the process, such as the transmissibility of
a disease [21]. The internal structure of the population is
taken into account defining degree-dependent and type-
dependent partial densities of uα

k (t), iαk (t), and bα
k (t). The

global densities are recovered by averaging over all distri-
butions, i.e. u(t) =

∑
α P(α)

∑
k P (k)uα

k (t). In order to
simplify the formalism, here on we limit our analysis to
single-type undirected random markovian networks [22],
that are maximally random graphs completely defined
by the degree distribution P (k) and the degree correla-
tions P (k|h).

According to this mean-field approximated description
of the processes, the temporal evolution of the partial den-
sities satisfies a system of differential equations of the type,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dtuk(t) = fu({uh(t)}, {ih(t)}, t, · · · )
d
dt ik(t) = fi({uh(t)}, {ih(t)}, t, · · · )
d
dtbk(t) = fb({ih(t)}, t, · · · ),

(1)

where the arguments of the functions fx(·) depend on the
general form of the dynamics described above. For in-
stance, fb is not expected to depend on unreached nodes,
fu on the bulk nodes, etc. The system is generally cou-
pled and non-linear, and admits an explicit solution only
in very special cases.

In statistical physics and theoretical biology, contin-
uous mean-field dynamical equations are commonly used
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to study models of population dynamics. The dynamical
picture emerging from these mean-field models allows to
understand the qualitative behavior of complex phenom-
ena occurring in real systems. At the same time, it is worth
noting that the rigorous derivation of differential equa-
tions for random processes on random graphs has been
introduced in the mathematic literature only recently, by
Wormald [23], and then applied to several problems, in-
cluding algorithms for the generation of random graphs
with a given degree sequence [24] and random k-SAT
problems [25]. Wormald’s differential equations method
provides a powerful tool to prove rigorous bounds for in-
teresting quantities (e.g. via distribution’s moments) in
discrete-time combinatorial processes. Here we limit our
analysis to a qualitative topological characterization of
the emerging degree distribution obtained within a purely
mean-field statistical physics approach. However, a rigor-
ous formalization of the present approach is desirable as
well.

2.1 Single-source processes

The degree distribution P̃ (k) of a subnetwork is related
to the degree distribution P (k) of the underlying one by

P̃ (k) =
∞∑

�=k

P (�)Q(k|�) (2)

where P (�) is the degree distribution, that defines the
probability of picking up a node of degree � in the orig-
inal network, and Q(k|�) is the conditional probability
of observing a node of degree k in the subnetwork if its
real degree in the complete network is �. In a dynamical
framework, the sampling probability depends on the tem-
poral evolution of the overall process. At the beginning,
the neighborhood of interfacial nodes is mainly composed
of unreached ones, whereas in the final stage of the dy-
namics most of the nodes have already been visited. The
probabilities P (�) and Q(k|�) are thus replaced by time-
dependent quantities Pt(�) and Qt(k|�), that are defined
by the evolution rule of the dynamical processes itself.

Using the properties of the dynamics, Pt(�) can be ex-
pressed as the probability of picking up a node of degree �
among the interfacial nodes of the growing cluster at a
time t, i.e. Pt(�) = P (�)i�(t)/i(t). Then, the way in which
the neighbors of this node are selected and visited depends
strictly on the details of the dynamical model. When the
growing cluster has a tree-like structure, a node of degree �
has only one incoming edge, and the remaining �− 1 links
are used to propagate towards unreached neighbors. Let
us call ρh the probability of visiting a neighbor of degree h
of an interfacial node of degree � (it is a function of uh(t)),
the conditional probability Qt(k|�) becomes

Qt(k|�) =
(

� − 1
k − 1

) [
∑

h

P (h|�)ρh[uh(t)]

]k−1

×
[

1 −
∑

h

P (h|�)ρh[uh(t)]

]�−k

. (3)

Putting together these two terms and recalling that the
global topology is given by averaging over the whole tem-
poral spectrum, we obtain the following expression for the
degree distribution P̃1(k) of the tree-like structure emerg-
ing from the dynamics,

P̃1(k) =
∞∑

�=k

P̃1(k, �) =
∞∑

�=k

1
T

∫ T

0

Pt(�)Qt(k|�) dt

=
∞∑

�=k

1
T

∫ T

0

P (�)i�(t)
i(t)

×
(

� − 1
k − 1

)[
∑

h

P (h|�)ρh[uh(t)]

]k−1

×
[

1 −
∑

h

P (h|�)ρh[uh(t)]

]�−k

dt, (4)

where T is the maximum sampling time. In the above
equation we have also introduced the joint degree distri-
bution P̃1(k, �) (of observing a node of degree k with real
degree �), that will be useful in the following.

The generalizations to multi-type and weighted net-
works are straightforward once one has correctly consid-
ered the evolution equations for the partial densities of
bulk, interfacial and unreached nodes. Again, the use of
the Bernoulli sampling technique (binomial probability)
in selecting neighboring nodes is justified by the spread-
ing like character of the dynamics considered here. For
different classes of dynamical processes, e.g. threshold pro-
cesses [20], the selection mechanism should be modified.

2.2 Multi-source processes

It frequently happens that several processes are running
at the same time, so that the overall measure is obtained
merging several single-source structures. This is indeed
the case of Internet’s mapping projects, in which single
(spanning) trees from different source nodes are merged
together in order to get more accurate mappings of the
underlying topology. A completely different example is
provided by the overall infection profile in a population
that is object of multiple non-interacting disease spread-
ings (e.g. e-viruses and worms in P2P communities), each
one generating a sort of causal tree.

In order to study multi-source processes, and the
emerging degree distribution, we put forward an approx-
imated method based on a simple mean-field argument
for the overlap probability of uncorrelated trees. A direct
generalization of the single source method presented above
is somewhat tricky, since in any node one edge per pro-
cess is used as an incoming edge and is not available for
spreading. Increasing the number of sources one should
take care of all possible combinations of these incoming
links, that becomes rapidly very complicated. Nonethe-
less, this approach leads to some valuable approximation.
Let us consider a process with two sources, and a node of
degree � + 1 for which we fix the incoming edge, so that
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both trees reach the node from such an edge. Moreover,
we assume that the two sampling processes are completely
independent and uncorrelated. With these hypotheses, the
observed degree distribution, obtained merging two trees
is

P̃2(k + 1) =
∞∑

�=k

P (� + 1)
1

T 2

∫ T

0

dt1dt2

× i�+1(t1)
i(t1)

i�+1(t2)
i(t2)

�∑

m,n=0

�∑

r=0

(
�
m

) (
� − m
n − r

)

×
(

m
r

)

δ(k − m − n + r)[ū(t1)ū(t2)]
r

× [ū(t1) (1 − ū(t2))]
m−r[ū(t2) (1 − ū(t1))]

n−r

× [(1 − ū(t1)) (1 − ū(t2))]
�−m−n+r

, (5)

where ū(t) =
∑

h P (h|�)ρh[uh(t)] and δ(x) is the
Kronecker’s symbol. Reordering the terms in equation (5),
and using the result for single-source processes, we get

P̃2(k + 1) =
∞∑

�=k

P (� + 1)

×
�∑

m,n,r=0

δ(k − m − n + r)B(�, m, n, r)

× P̃1(m + 1, � + 1)
P (� + 1)

P̃1(n + 1, � + 1)
P (� + 1)

(6)

in which B(�, m, n, r) is the hypergeometric distribution

B(�, m, n, r) =
(

� − m
n − r

)(
m
r

)

/

(
�
n

)

.

The case in which both trees reach a node through the
same edge is obviously very special, as well as equation (5)
that does not hold in general. However, one can exploit
the picture emerging from equation (6) and generalize it
to be valid whatever the choice of the incoming edges.
Unlabeling the incoming edges and considering them like
the other edges discovered during single-source processes,
we get the following approximation for the observed degree
distribution in a process with two sources,

P̃2(k, �) ≈ P (�)
�∑

m,n=1

�∑

r=0

B(�, m, n, r)

× P̃1(n, �)
P (�)

P̃1(m, �)
P (�)

δ(k − n − m + r), (7)

the sums over m and n start from 1 since we assume that
all nodes are discovered (the minimum observed degree
being 1). Note that even if two consecutive processes are
dynamically uncorrelated, the topological and functional
properties of the underlying system always introduce some
correlations. For instance, in real networks there are very
central nodes that bear a large fraction of the traffic, the
so-called backbone nodes. Depending on the process it may

be easier or more difficult to traverse these nodes. Again,
in the Internet there are administrative policies governing
local routing systems, therefore in some cases it is impossi-
ble to visit the entire neighborhood of a node. This kind of
correlations cannot be easily included in the above mean-
field analysis. On the other hand, Internet’s local corre-
lations may rapidly change in time, as they are affected
by traffic congestions and routers’ failures; therefore the
average qualitative behavior of real processes should be
close to the uncorrelated one [26].

Writing R̃2(k, �) = P̃2(k, �)/P (�), equation (7) can be
rewritten

R̃2(k, �) =
�∑

m,n=1

�∑

r=0

δ(k − n − m + r)

× B(�, m, n, r)R̃1(n, �)R̃1(m, �), (8)

and the merging process can be easily generalized to any
number ν of sources exploiting the recursion relation,

R̃ν(k, �) =
�∑

m,n=1

�∑

r=0

δ(k − n − m + r)

× B(�, m, n, r)R̃1(n, �)R̃ν−1(m, �). (9)

The degree distribution of the network obtained merging ν
trees is then given by P̃ν(k) =

∑
� P (�)R̃ν(k, �). Note that

equation (9) is general and holds, within the validity of the
approximation, for any type of process in the class under
study, while the explicit expression of R̃1(k, �) as well as
the correct form of B(�, m, n, r) depend on the details of
the dynamics.

In the next section, we show how these methods can
be applied to the traceroute model that describes the ex-
periments used to determine the topology of the Internet.

3 Application to the internet’s mapping
techniques

The Internet’s topology can be studied at different levels.
The most detailed Internet’s descriptions are obtained at
the level of single routers, but coarse grained representa-
tions are usually preferred for the possibility of obtaining
a more reliable picture of the system (see Ref. [11] for
a simple introduction to the networked representations
of the Internet). Routers sharing the same administra-
tive policies are divided into Autonomous Systems (AS),
that define the most important coarse-grained level of the
Internet’s topology. The first maps of the Internet were
collected mainly at the AS level, using empirical data ex-
tracted from BGP tables together with those obtained by
dynamical sampling methods based on traceroute mea-
surements from single source [27–29]. According to these
maps, that collect partial views of the net from some fa-
vored points, the Internet should be a very heterogeneous
network with approximately power-law degree distribu-
tion P (k) ∝ k−γ , and γ � 2.1 ÷ 2.4 [28,29]. Because of
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the peculiar properties of scale-free networks, this discov-
ery motivated a series of theoretical works in which toy-
models of the Internet’s mapping process were proposed
and analysed in order to justify or question this empirical
evidence [8,10,30,31].

In a traceroute experiment, a given number of probes
are sent from a source to a set of target nodes, tracing back
the path followed during the exploration. These probes are
data packets that follow the same paths normally used
by information to flow throughout the Internet. Although
traffic congestions and local network’s policies may cause
unpredictable path’s inflation, the traceroute paths are
optimized in order to be the shortest ones between the
source and the target nodes. Therefore, standard theoret-
ical models of traceroute’s explorations assume that the
probes follow one of the possible shortest paths between
the source and the destination. More precisely, we can in-
clude in the path only one shortest path among all equiv-
alent ones (either a priori fixed or randomly chosen), or
all of them. All strategies can occur in realistic processes,
that is probably a mixture of them, but people usually
give special attention to the one with a unique choice of
the shortest path between nodes, that clearly brings to the
worst overall sampling. We will also consider this case.

A one-to-all traceroute process is thus represented by
an iterative algorithm running on a given network, that
starting from a single source generates a spanning tree to
all other nodes. Multi-source processes consist in merging
different single-source spanning trees. In general, the re-
liability of traceroute-like sampling methods strongly de-
pends on both the number of sources deployed on the net-
work and the level of degree heterogeneity [10]. In fact,
Lakhina et al. [30] first showed numerically that sampling
from single sources introduces uncontrolled biases and the
observed statistical properties may sharply differ from the
original ones. More recently, Clauset and coworkers [8,12]
have pointed out that, because of the particular search
procedure, a one-to-all traceroute tree has a power-law
degree distribution P̃1(k) ∝ k−α even if the underlying
network is not scale-free. Actually, this was analytically
proved only for homogeneous random graphs with fixed
or Poisson degree distribution. In this case, the traceroute
tree has a power-law distribution with exponent α = 1 up
to a cut-off equal to the average degree z. For networks
with power-law degree distributions P (k) ∝ k−γ , they
suggested that the observed one should still be power-
law but with a different exponent α < γ. Within the
same framework, but in partial contrast with this thesis,
Cohen et al. [13] have rigorously showed that in case of
power-law networks, the bias on the exponent γ is negligi-
ble. Other recent studies, based on mean-field approaches
corroborated by numerical simulations, confirm the over-
all reliability of these mapping techniques on scale-free
graphs [10,31]. Nevertheless, the debate on the traceroute
process is still open, the main issues concerning the rele-
vance of the biases in single-source processes and the im-
provements obtained using multiple sources. In the fol-
lowing, we try to address both these subjects using the
theoretical approach developed in the previous section.

The analytical results mentioned above are actually
based on approximated models that partially overlook the
dynamical character of the process. The method used in
reference [8] to study one-to-all traceroutes is based on dif-
ferential equations, but node sampling is essentially static.
It assumes that a node of a given degree can appear with
the same probability at any temporal step of the pro-
cess. This is approximately true on homogeneous networks
since the term ik(t)

i(t) in equation (4) is �1, but it cannot
be extended to the case of heterogeneous networks. The
formal approach introduced in reference [12] is more gen-
eral, but it is still based on a uniformly random process,
the so-called “exposure on the fly” technique. It implicitly
assumes a fitness-like variable homogeneously distributed
on the “stubs” of a network, that plays the role of the time
at which a node is explored. We improve this approxima-
tion using the dynamical method exposed in Section 2 for
both single-source and multi-source processes. Obviously
the framework becomes more complex and calculations
can be performed analytically only in some special cases.

3.1 Homogeneous networks

Let us consider the one-to-all traceroute exploration of an
homogeneous random graph with Poisson degree distribu-
tion P (k) = e−zzk/k!. The original traceroute dynamics
is discrete in time: at each temporal step, an interfacial
node � is randomly selected to spread out probes towards
all its unknown neighbors; then all reached nodes are in-
cluded in the interface, whereas node � is moved to the
bulk. A continuous-time approximation is defined group-
ing together N discrete steps and passing to differential
equations in the limit of large size N .

As the degree distribution is peaked around the aver-
age value z, one can safely do the further approximation
that all nodes behave identically, that is their temporal
evolution is described by the mean-field densities u(t), i(t),
b(t) [8]. A selected interfacial node is connected to a un-
reached node with probability p = z/N , therefore in a
temporal step, p u(t) unreached nodes are visited and one
node passes from the interface to the bulk. This process
translates in the following system of equations [8]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dtu(t) = −z u(t),

d
dt i(t) = +z u(t) − 1,

d
dtb(t) = +1.

(10)

The solution gives u(t) = exp(−zt), i(t) = 1−t−exp(−zt)
and b(t) = 1 − t, with t going from zero to a maximum
value T , that is the first root of i(t) = 0. Moreover, since
in the traceroute sampling the probes emerging from the
interfacial nodes visit all unreached neighbors, the mean-
field probability to reach a node is just ρ[u(t)] � u(t).

The network’s homogeneity implies that the internal
degree profile of interfacial nodes is approximately the
same of the underlying network at all times. According
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to this approximation, for a traceroute spanning tree on
an homogeneous Poisson graph equation (4) reduces to

P̃1(k+1) �
∞∑

�=k

∫ T

0

dt

T
P (�+1)

(
�
k

)
[
e−zt

]k[
1 − e−zt

]�−k
,

(11)
that is exactly the result obtained by Clauset and
Moore [8].

The integral in equation (11) can be carried out noting
that T � 1 (for z � 1) and passing to the variable u =
u(t) = e−zt, with du = −zudt. Then, we can also easily
perform the sum over �,

P̃1(k+1)≈
∞∑

�=k

P (�+1)
(

�
k

) [
uk

zk
F2,1(k, k−�, k+1, u)

]1

e−z

≈ e−z

zk

∞∑

�=k

zl+1

l + 1!

(
�
k

)

×
[(

�
k

)−1

− e−kzF2,1(k, k − �, k + 1, e−z)

]

≈ 1
zk

[

1 − zk

k!
e−z

]

� 1
zk

, (12)

where F2,1 is the hypergeometric function, and the term
proportional to e−kz is negligible for sufficiently large val-
ues of k. As in reference [8], we get an observed power-
law degree distribution P̃1(k) ∼ k−1 [8], with a cut-off
at k � z. (It is worth to remark that Poisson random
networks with average degree large enough to generate a
power-law under sampling are extremely unlike in realistic
systems, i.e. the Internet, community networks, etc. [10]).

The results obtained simulating the traceroute model
from a single source on a Poisson random graph (e.g. using
the unique shortest path algorithm proposed in Ref. [10]),
confirm the k−1 behavior of the observed degree distribu-
tion (see Fig. 2A).

In Figure 2A, we also report the observed degree distri-
butions obtained sampling from two or more sources, that
clearly depart from a purely power-law shape. The ob-
served weird behavior, neither power-law nor poissonian,
in which a peak appears at low degree values and moves
forward for increasing number of sources, can be easily un-
derstood, at a qualitative level, using the theory presented
in Section 2. These peaks are due just to the superposi-
tion of power-law behaviors. In single-source experiments,
most visited nodes have observed degree one, as they are
discovered at the end of the process. The majority of them
is rediscovered again in the same fashion during the sec-
ond one-to-all process. Thus merging two spanning trees
the overall distribution presents a peak at degree 2 in-
stead of 1. The same happens for three sources, with a
peak at degree 3, and for increasing number of sources. In
general, the position of the peak kp is not strictly equal
to the number of sources ν, but kp ≤ ν usually holds.
Solving numerically the recursive equation (9), we get the
results reported in Figure 2B. The curves have the same
behavior as in the simulations, characterized by a peak
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Fig. 2. A) Degree distribution P̃ν(k) of the network produced
by merging together ν spanning trees generated by one-to-all
traceroutes algorithms on a Poissonian random graph of size
N = 105 and average degree z = 100. Increasing the number ν
of sources, i.e. of trees, the degree distribution becomes closer
to the original one. A small peak around z is developed because
of metric correlations. B) Degree distribution P̃ν(k) obtained
numerically from the recursion relation in equation (9) for a
Poissonian random graph of average degree z = 100.

at increasing degree values, then a decrease up to a cut-
off about k ≈ z. Strikingly, the assumption of complete
uncorrelation of successive spanning trees seems to be ap-
proximately correct for homogeneous random graphs. This
is true up to a certain amount of sources (about 20 in
Fig. 2B), above which the “metric” correlations between
shortest paths are not negligible. At this point, a peak at
the original average degree z is developed.

Our theoretical approach shows that the observed
power-laws in one-to-all traceroutes on homogeneous ran-
dom graphs are the result of a kind of convolution over
a family of peaked symmetric distributions. This con-
volution process can be naturally “inverted” by increas-
ing the number of observation points. For a large num-
ber of sources the tree merging process corresponds to
another kind of convolution on the power-laws emerging
from single-source experiments and produces an unbiased
sampling of the original degree distribution. However, the
minimal number ν∗ of sources required to obtain an un-
biased degree distribution is considerably large in homo-
geneous networks: from simple arguments and numerical
evidences, ν∗ ∼ O(z).
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Fig. 3. Temporal behavior of the global and partial densities
of unreached (A) and interfacial (B) nodes in an homogeneous
random graph with Poisson degree distribution of average de-
gree z = 100. The curves are obtained by numerical integration
of the system in equation (13).

In general the mean-field approximation on networks
can be improved considering degree-dependent mean-field
quantities, therefore we consider the system of differential
equations describing the dynamics for degree-dependent
partial densities of bulk, interfacial and unreached nodes.
In uncorrelated networks, it reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dtuk(t) = −∑

h
(h−1)

z P (h) ih(t)
i(t) k uk(t),

d
dt ik(t) = +

∑
h

(h−1)
z P (h) ih(t)

i(t) k uk(t) − ik(t)
i(t) ,

d
dtbk(t) = + ik(t)

i(t) ,

(13)

where (h−1)
z P (h) ih(t)

i(t) k uk(t) is the probability that emerg-
ing from an interfacial node of degree h we reach a node of
degree k still unreached at time t. Note that the above sys-
tem reduces to equations (10) when the network is a regu-
lar random network of degree distribution P (k) = δk,z . For
poissonian networks, the exact time-depending behavior
of the partial densities is quite complicated, as evidenced
by the curves reported in Figure 3 obtained solving nu-
merically the system in equation (13). In the numerical
solution we take initial conditions ih(0) = C0δh,z with
C0 � ∆t, since both the initial condition and the tempo-
ral step ∆t should be of order 1/N in a system of size N .

The general behavior can be explained with simple ar-
guments. At the beginning of the process, the probability
of having a node of degree k at the interface is purely topo-
logical, i.e. ik(0+)

i(0+) � k
z . The late times behavior for t � 0,

can instead be computed knowing that the corresponding
behavior of i(t) is approximately linear, i.e. i(t) � 1 − t,
and that uk(t) decreases exponentially fast in time. These
results, obtained plugging the short times approximation
ik(t)
i(t) � k

z into the equation for duk(t)
dt , are verified in the

numerics. Hence, from equation (13), dik(t)
dt ≈ ke−kt− ik(t)

1−t .
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Fig. 4. Temporal behavior of the global and partial densities of
unreached (A) and interfacial (B) nodes in a power-law random
graph with exponent γ = 2.5 and average degree z � 4.5. The
curves are obtained by numerical integration of the system in
equation (13).

For sufficiently large k, the first term at the r.h.s. can
be neglected, thus after integration we get ik(t) � 1 − t.
Therefore, the quantity ik(t)

i(t) is expected to approach the
unity for sufficiently large t � t∗k, where t∗k is the time at
which the maximum value of ik(t) is reached. From the
previous arguments one expects t∗k ∝ 1/k.

These simple calculations, and the numerical results
reported in Figure 3, show that the short time behavior
of the sampling process is not trivial at all. Nonetheless,
the degree distributions obtained solving numerically the
system in equation (13) and plugging the corresponding
partial densities in equations (4) and (9) are in perfect
agreement with the analytical results based on the ap-
proximation of complete homogeneity (not shown).

3.2 Heterogeneous networks

The degree inhomogeneity is instead expected to play an
important role in the exploration of networks with skew
and fat-tailed degree distributions, in which the dynamical
sampling of nodes is far from being a uniform process.
Though to obtain the exact form of partial and global
densities it is necessary to solve the evolution equations
explicitly, that is in general very difficult, the qualitative
behavior of these quantities for large degree values (� � z)
can be deduced with some approximate argument. We will
show that the tail of the degree distribution of a power-
law random graph is sampled with negligible bias, even
in single-source experiments. This is mainly due to the
fact that high degree nodes arrive at the interface of the
process almost immediately, and their neighbors are fairly
sampled with a probability that depends only weakly on
the dynamics.

At the beginning of the process, nodes with large de-
gree are preferentially sampled, i.e. i�(t)/i(t) � �/z, im-
plying that the number of unreached hubs rapidly decays
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to zero. At this point, almost all high degree nodes are
at the interface of the process, i�(t) varies slowly, and the
sampling among high degree nodes inside the interface be-
comes almost uniformly random (i.e. hubs of degree � are
picked with probability P (�)). Hence, for sufficiently large
times and degrees � � z, the quantity i�(t)

i(t) is expected
to become independent of the degree �. Solving numeri-
cally equations (13), we find that, for t � 0, i�(t)

i(t) ∝ t−β ,
with a cut-off close to the final sampling time T and the
exponent β depending on the details of the degree distri-
bution (not only on γ). The numerical results presented
in Figure 5 suggest a scaling function for i�(t)

i(t) of the type

i�(t)
i(t)

≈ �

z
F

[

t

(
�

z

)1/β
]

, (14)

with F(x) ∝ x−β when x � 1 and F(x) ≈ 1 when x � 1.
The scaling form is correct up to a time T� ∼ T (�/z)−1/β ,
at which the quantity vanishes. Note that for a system of
size N , and power-law degree distribution of exponent γ,
the maximum degree scales as �max ∼ N1/(γ−1). Since the
temporal step of the dynamics (integration step) is ∆t ∼
1/N , a realistic minimum observation time for the above
curves is ∆t1/(1−γ), that is traced in Figure 5A with a
dotted vertical line. It is clear that for high-degree nodes
the power-law scaling behavior dominates the most of the
dynamics. The result is surprising since one would expect
that, in a power-law network, i�(t)/i(t) � �/z during the
whole dynamics. We will see that this behavior is crucial
to get an unbiased estimate of the exponent.

The other interesting time-dependent quantity is
the probability to visit an unreached node, ū(t) =∑

�
�
z P (�)u�(t). At long times and high degrees �, the

quantity u�(t) is non zero only for low degree nodes, so the
temporal behavior of ū(t) is similar to that of u(t). Actu-
ally, it seems to decay from 1 with a law that is clearly
slower than an exponential one, but faster than a power-
law. Indeed, if i�(t)/i(t) follows a power-law behavior, for-
mally integrating equations (13) one gets ū(t) ∼ e−atα

,
with α < 1. However, numerical integration does not clar-
ify the possible relation existing between α and β.

Plugging the above results into the sampling integral
(Eq. (4)), it is actually possible to show numerically that
the observed degree distribution maintains the same func-
tional form of the original one, at least for high degree
nodes. The comparison between observed degree distribu-
tion obtained from simulations and by solving numerically
the sampling equations are reported in Figure 6. The qual-
itative behavior is the same: the traceroute sampling on
power-law random graphs reproduces the original degree
distribution without any significative bias.

Some further insights on the reason of this result can
be obtained with the following rough argument. Let us
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Fig. 5. A) Temporal behavior of the function ik(t)/i(t) for
high-degree nodes in a power-law random graph. B) The scal-
ing function F (see Eq. (14)) associated with some universal
behavior of ik(t)/i(t) for high-degree nodes.

consider the sampling formula

P̃1(k + 1) �
∞∑

�=k

∫ T

0

dt

T

i�+1(t)P (� + 1)
i(t)

×
(

�
k

)

[ū(t)]k[1 − ū(t)]�−k (15)

and approximate it for � � z considering that 1) during
most of the dynamics the quantity ik(t)/i(t) assumes a
scaling form ∝ t−β , and 2) the binomial probability can
be approximated by a Gaussian peaked around its max-
imum, i.e. ū∗ ∼ k/�. A rough estimate can be done per-
forming the Gaussian integral at the saddle-point or, in an
equivalent way, recalling a property of Dirac delta func-
tions, i.e.

∫
f(t)δ(g(t))dt ≈ ∑

i f(ti)/|g′(ti)|, where ti are
the zeros of g(t) and g′(ti) is the derivative of the func-
tion g in these points. For large k and �, g(t) ≈ �ū(t)− k,
thus |g′(t)| ∝ �|dū

dt |t�
(in which t� is the time at which

ū(t�) � u∗ � k/� for given values of k and �). Putting all
ingredients together, the sampling formula becomes

P̃1(k + 1) �
∞∑

�=k

P (� + 1)
1

� + 1
t−β
�

|dū
dt |t�

. (16)
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Fig. 6. A) Degree distribution P̃ν(k) of the network produced
by merging together ν spanning trees generated by one-to-all
traceroutes algorithms on a power-law random graph of size
N = 104, average degree z � 4.5 and exponent γ � 2.5. The
level of sampling, almost unbiased with just a single source,
improves increasing the number of sources. B) Degree distri-
bution P̃ν(k) obtained numerically from the recursion relation
in equation (9) for a power-law random graph with average
degree z � 4.5 and exponent γ � 2.5.

Since ū(t) ∼ e−atα

, the derivative is proportional to k/�
times some power-law in time, and we get

P̃1(k + 1) ∝
∞∑

�=k

P (� + 1)
1
k

[

log(
�

k
)
] 1−β−α

α

. (17)

For large degree we can neglect the logarithmic contribu-
tions in the sum over �, finding P̃1(k) ∝ k−γ .

According to this result, the degree distribution of the
spanning tree emerging from one-to-all traceroute sam-
plings of a scale-free graph (with exponent between 2
and 3) is qualitatively the same of that of the underlying
network, at least for high degree nodes. The result is in
agreement with a recent analysis by Cohen and cowork-
ers [13], in which some rigorous bounds for the tracer-
oute biases in power-law networks are obtained using the
exposure technique. We believe that the general picture
describing the behavior of traceroute-like processes could
be extracted from the present approach in a much easier
way than from the “exposure on the fly” method. More-
over, the framework can be straightforwardly extended to
study, at least numerically, the effects of other relevant
parameters, and correlations. In these perspective our ap-

proach can be considered as a benchmark that could be
useful in the problem of network inference [33] and bias
reduction [34].

4 Conclusions

The study of the interplay between topological and dy-
namical properties of networks is of primary interest in
the current research on complex systems. With the present
work, we introduce in this framework a general method to
investigate the topological properties of growing clusters
that are dynamically defined by a given class of spreading
processes and algorithms. These are processes that start-
ing from a single source span the whole network, traversing
all nodes only once. The temporal evolution is defined by
means of a system of differential equations for the (partial)
densities of bulk, interfacial, and unreached nodes.

Our approach, that allows to compute analytically or
numerically the degree distribution of the emerging tree-
like structure, is based on the idea that during its evolution
the dynamics performs a sampling of the local structure of
the underlying network. As the sampling rate depends on
the dynamical properties themselves, the degree distribu-
tion of the emerging subnetwork may differ considerably
from that of the original network. The generalization to
study multiple-source processes is also discussed, at least
in the approximation that the overall structure is obtained
merging together collections of independent single-source
processes.

A natural application of the method presented here
consists in the analysis of the dynamical sampling of net-
works. We have provided a deeper insight in the qualita-
tive behavior of traceroute-like processes, shedding light
on the dynamical mechanism at the origin of the ob-
served topology. The reasons for the different sampling
accuracy observed in homogeneous and heterogeneous net-
works should be now clear. In particular, we have shown
that on homogeneous networks,

– in a single source sampling, the network is observed
to have a power-law degree distribution with exponent
−1 up to a cut-off about the original average degree z;

– increasing the number of sources destroys the power-
law behavior, but a fair sampling requires about O(z)
sources;

– “metric” correlations (that can be associated to the be-
tweenness centrality of nodes) favor a better sampling
of the local topology for increasing number of sources.

In contrast, on heterogeneous networks,

– high-degree nodes are preferentially sampled at the be-
ginning of the process, and with higher accuracy (in
this case high-degree nodes are essentially those with
highest betweenness);

– in single-source experiments, power-law degree distri-
butions are sampled with negligible biases;

– the overall sampling of the degree distribution becomes
very accurate with just few sources.
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We believe that a good understanding of these kind of
processes is fundamental in order to improve the perfor-
mances of current dynamical sampling techniques applied
to technological networks such as the Internet and the
Web.

As mentioned in the Introduction, there are other dy-
namical processes that can be described using the present
approach, from the epidemic spreading, to broadcast trees
and search techniques. We just mention a couple of cases
that may find further developments. One consists in a
recently proposed model of search in social networks, in
which the search efficiency decays with the distance [35].
Let us consider an uncorrelated homogeneous random net-
work, on which we perform a distance dependent snowball
search such that the probability to visit a still unreached
neighbor of an interfacial node is θ(t) ∝ (t + A)−β , with
β ∈ [0, 1). The corresponding global density is obtained
solving the equation du(t)

dt = −zθ(t)u(t). The limit in
which β → 1 is particularly instructive, since the global
density decreases much slower than an exponential. Per-
forming the calculations, u(t) ∼ A/(A+ t) and the emerg-
ing tree presents a degree distribution P̃1(k) ≈ k−2 up to
a cut-off around z. The example shows how easy can be
to find processes that generate power-law degree distribu-
tions out of exponential networks.

The second relevant example concerns epidemic-like
spreading phenomena. Here the system of differential
equations governing the dynamics is the celebrated
susceptible-infected-removed (SIR) model [36], in which
unreached nodes are identified with susceptible nodes, in-
terfacial nodes with infected ones and the bulk nodes
correspond to removed individuals. In analogy with the
traceroute dynamics, we can write a system of first-order
differential equations governing the temporal evolution
of partial densities [37]. The fundamental difference be-
tween the two dynamics is that in the traceroute model at
each time step the algorithm chooses an interfacial node
to sample its neighbors, while in the SIR model all in-
fected nodes have a fixed probability to spread the virus
to their neighbors (with spreading rate λ). However, for
small values of λ (above the percolation threshold) the
topological structure is still tree-like and can be analyzed
as in Section 2. When different transmission properties
(e.g. degree-dependent and distance-dependent rates λ)
are taken into account, the growing infection region might
display very non-trivial topologies. At the same time, the
knowledge of the topological structure of an infection’s
outbreak may be relevant for the design of more appropri-
ate immunization strategies.

From a general point of view, the present formalism
can be extended to study (at least numerically) the effect
of degree-degree correlations or quenched disorder, that
have not been considered here but play an important role
in all real experiments.

In conclusion, we expect that analyses like the one per-
formed in this paper will allow to get a better understand-
ing of the functional interplay between a network and the
dynamical processes evolving on it.

The author is grateful to A. Barrat, G. Bianconi and M. Marsili
for fruitful and stimulating discussions, and to D. Beghé for the
constant encouragement during this work.
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